Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3

Top Posts

Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3 1 2 * † Nutrients 2024 , 16 (1), 159; https://doi.org/10.3390/nu16010159 Abstract : 1. Introduction 2. Materials and Methods 2.1. Animals and IF Mouse Model 2.2. Echo MRI 2.3. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT) 2.4. Enzyme-Linked Immunosorbent Assay (ELISA) 2.5. Hematoxylin and Eosin (H&E) Staining 2.6. Terminal Deoxynucleotidyl Transferase Dutp Nick end Labeling (TUNEL) Assay 2.7. Western Blot Analysis 2.8. Double or Triple Immunofluorescences 2.9. Morris Water Maze (MWM) 2.10. Statistical Analysis 3. Results 3.1. IF Attenuates Adipocyte Death and Macrophage Infiltration in the WAT of HFD Mice 3.2. IF Reduces Circulating and WAT LCN2 Protein Levels in HFD Mice 3.3. IF Reduces Circulating and WAT GAL3 Protein Levels in HFD Mice 3.4. IF Improves Memory Deficits in HFD Mice 3.5. IF Inhibits BBB Leakage in the Hippocampus of HFD Mice 3.6. IF Reduces Microglial GAL3 and Astrocytic LCN2 in the Hippocampus of HFD Mice 3.7. IF Reduces Hippocampal Inflammation in HFD Mice 4. Discussion 5. Conclusions Supplementary Materials Author Contributions Funding Institutional Review Board Statement Informed Consent Statement Data Availability Statement Acknowledgments Conflicts of Interest References Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019 , 15, 288–298. [Google Scholar] [CrossRef] [PubMed] Lee, Y.S.; Li, P.; Huh, J.Y.; Hwang, I.J.; Lu, M.; Kim, J.I.; Ham, M.; Talukdar, S.; Chen, A.; Lu, W.J.; et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011 , 60, 2474–2483. [Google Scholar] [CrossRef] [PubMed] Kim, K.E.; Jeong, E.A.; Lee, J.Y.; Yi, C.O.; Park, K.A.; Jin, Z.; Lee, J.E.; Horvath, T.L.; Roh, G.S. Myeloid sirtuin1 deficiency aggravates hippocampal inflammation in mice fed high-fat diets. Biochem. Biophys. Res. Commun. 2018 , 499, 1025–1031. [Google Scholar] [CrossRef] [PubMed] Jeong, E.A.; Lee, J.; Shin, H.J.; Lee, J.Y.; Kim, K.E.; An, H.S.; Kim, D.R.; Choi, K.Y.; Lee, K.H.; Roh, G.S. Tonicity-responsive enhancer-binding protein promotes diabetic neuroinflammation and cognitive impairment via upregulation of lipocalin-2. J. Neuroinflammation 2021 , 18, 278. [Google Scholar] [CrossRef] Kim, H.; Kang, H.; Heo, R.W.; Jeon, B.T.; Yi, C.O.; Shin, H.J.; Kim, J.; Jeong, S.Y.; Kwak, W.; Kim, W.H.; et al. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice. J. Cereb. Blood Flow. Metab. 2016 , 36, 1098–1110. [Google Scholar] [CrossRef] Kjeldsen, L.; Johnsen, A.H.; Sengeløv, H.; Borregaard, N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993 , 268, 10425–10432. [Google Scholar] [CrossRef] Shin, H.J.; Jin, Z.; An, H.S.; Park, G.; Lee, J.Y.; Lee, S.J.; Jang, H.M.; Jeong, E.A.; Kim, K.E.; Lee, J.; et al. Lipocalin-2 Deficiency Reduces Hepatic and Hippocampal Triggering Receptor Expressed on Myeloid Cells-2 Expressions in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Brain Sci. 2022 , 12, 878. [Google Scholar] [CrossRef] Kim, K.E.; Lee, J.; Shin, H.J.; Jeong, E.A.; Jang, H.M.; Ahn, Y.J.; An, H.S.; Lee, J.Y.; Shin, M.C.; Kim, S.K.; et al. Lipocalin-2 activates hepatic stellate cells and promotes nonalcoholic steatohepatitis in high-fat diet-fed Ob/Ob mice. Hepatology 2023 , 77, 888–901. [Google Scholar] [CrossRef] Shin, H.J.; Jeong, E.A.; Lee, J.Y.; An, H.S.; Jang, H.M.; Ahn, Y.J.; Lee, J.; Kim, K.E.; Roh, G.S. Lipocalin-2 Deficiency Reduces Oxidative Stress and Neuroinflammation and Results in Attenuation of Kainic Acid-Induced Hippocampal Cell Death. Antioxidants 2021 , 10, 100. [Google Scholar] [CrossRef] Hsu, D.K.; Chen, H.Y.; Liu, F.T. Galectin-3 regulates T-cell functions. Immunol. Rev. 2009 , 230, 114–127. [Google Scholar] [CrossRef] Zhu, N.; Zhu, L.; Huang, B.; Xiang, W.; Zhao, X. Galectin-3 Inhibition Ameliorates Streptozotocin-Induced Diabetic Cardiomyopathy in Mice. Front. Cardiovasc. Med. 2022 , 9, 868372. [Google Scholar] [CrossRef] [PubMed] Yin, Q.; Chen, J.; Ma, S.; Dong, C.; Zhang, Y.; Hou, X.; Li, S.; Liu, B. Pharmacological Inhibition of Galectin-3 Ameliorates Diabetes-Associated Cognitive Impairment, Oxidative Stress and Neuroinflammation in vivo and in vitro. J. Inflamm. Res. 2020 , 13, 533–542. [Google Scholar] [CrossRef] [PubMed] Baumeier, C.; Kaiser, D.; Heeren, J.; Scheja, L.; John, C.; Weise, C.; Eravci, M.; Lagerpusch, M.; Schulze, G.; Joost, H.G.; et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 2015 , 1851, 566–576. [Google Scholar] [CrossRef] [PubMed] Li, L.; Wang, Z.; Zuo, Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS ONE 2013 , 8, e66069. [Google Scholar] [CrossRef] [PubMed] Anson, R.M.; Guo, Z.; de Cabo, R.; Iyun, T.; Rios, M.; Hagepanos, A.; Ingram, D.K.; Lane, M.A.; Mattson, M.P. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. USA 2003 , 100, 6216–6220. [Google Scholar] [CrossRef] [PubMed] Jeon, B.T.; Jeong, E.A.; Shin, H.J.; Lee, Y.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 2012 , 61, 1444–1454. [Google Scholar] [CrossRef] [PubMed] Yan, Q.W.; Yang, Q.; Mody, N.; Graham, T.E.; Hsu, C.H.; Xu, Z.; Houstis, N.E.; Kahn, B.B.; Rosen, E.D. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 2007 , 56, 2533–2540. [Google Scholar] [CrossRef] Lee, J.; Lee, B.W.; Kim, K.E.; An, H.S.; Jeong, E.A.; Shin, H.J.; Song, S.B.; Roh, G.S. Adzuki Bean MY59 Extract Reduces Insulin Resistance and Hepatic Steatosis in High-Fat-Fed Mice via the Downregulation of Lipocalin-2. Nutrients 2022 , 14, 5049. [Google Scholar] [CrossRef] Pejnovic, N.N.; Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Milovanovic, M.Z.; Nikolic, I.G.; Zdravkovic, N.S.; Djukic, A.L.; Arsenijevic, N.N.; Lukic, M.L. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes 2013 , 62, 1932–1944. [Google Scholar] [CrossRef] Verkman, A.S.; Binder, D.K.; Bloch, O.; Auguste, K.; Papadopoulos, M.C. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim. Biophys. Acta 2006 , 1758, 1085–1093. [Google Scholar] [CrossRef] Rash, J.E.; Yasumura, T.; Hudson, C.S.; Agre, P.; Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl. Acad. Sci. USA 1998 , 95, 11981–11986. [Google Scholar] [CrossRef] Xu, J.; Jiang, Y.; Wang, J.; Shi, X.; Liu, Q.; Liu, Z.; Li, Y.; Scott, M.J.; Xiao, G.; Li, S.; et al. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. 2014 , 21, 1229–1239. [Google Scholar] [CrossRef] [PubMed] Kusminski, C.M.; Bickel, P.E.; Scherer, P.E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 2016 , 15, 639–660. [Google Scholar] [CrossRef] [PubMed] Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018 , 155, 407–417. [Google Scholar] [CrossRef] Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005 , 46, 2347–2355. [Google Scholar] [CrossRef] [PubMed] Braune, J.; Lindhorst, A.; Fröba, J.; Hobusch, C.; Kovacs, P.; Blüher, M.; Eilers, J.; Bechmann, I.; Gericke, M. Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation. Diabetes 2021 , 70, 538–548. [Google Scholar] [CrossRef] Jaberi, S.A.; Cohen, A.; D’Souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed. Pharmacother. 2021 , 142, 112002. [Google Scholar] [CrossRef] Abella, V.; Scotece, M.; Conde, J.; Gómez, R.; Lois, A.; Pino, J.; Gómez-Reino, J.J.; Lago, F.; Mobasheri, A.; Gualillo, O. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015 , 20, 565–571. [Google Scholar] [CrossRef] Li, P.; Liu, S.; Lu, M.; Bandyopadhyay, G.; Oh, D.; Imamura, T.; Johnson, A.M.F.; Sears, D.; Shen, Z.; Cui, B.; et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 2016 , 167, 973–984.e12. [Google Scholar] [CrossRef] Kim, K.H.; Kim, Y.H.; Son, J.E.; Lee, J.H.; Kim, S.; Choe, M.S.; Moon, J.H.; Zhong, J.; Fu, K.; Lenglin, F.; et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017 , 27, 1309–1326. [Google Scholar] [CrossRef] Zhang, X.; Yin, X.; Zhang, J.; Li, A.; Gong, H.; Luo, Q.; Zhang, H.; Gao, Z.; Jiang, H. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl. Sci. Rev. 2019 , 6, 1223–1238. [Google Scholar] [CrossRef] [PubMed] Johnson, A.C. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023 , 54, 673–685. [Google Scholar] [CrossRef] [PubMed] Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019 , 25, 270–276. [Google Scholar] [CrossRef] [PubMed] Stranahan, A.M.; Hao, S.; Dey, A.; Yu, X.; Baban, B. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J. Cereb. Blood Flow. Metab. 2016 , 36, 2108–2121. [Google Scholar] [CrossRef] [PubMed] Guo, Y.; Dong, L.; Gong, A.; Zhang, J.; Jing, L.; Ding, T.; Li, P.A.; Zhang, J.Z. Damage to the blood-brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int. J. Mol. Med. 2021 , 48, 142. [Google Scholar] [CrossRef] [PubMed] Belarbi, K.; Jopson, T.; Tweedie, D.; Arellano, C.; Luo, W.; Greig, N.H.; Rosi, S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J. Neuroinflammation 2012 , 9, 23. [Google Scholar] [CrossRef] [PubMed] Rochfort, K.D.; Collins, L.E.; Murphy, R.P.; Cummins, P.M. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PLoS ONE 2014 , 9, e101815. [Google Scholar] [CrossRef] Tasaki, A.; Shimizu, F.; Sano, Y.; Fujisawa, M.; Takahashi, T.; Haruki, H.; Abe, M.; Koga, M.; Kanda, T. Autocrine MMP-2/9 secretion increases the BBB permeability in neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 2014 , 85, 419–430. [Google Scholar] [CrossRef] Chen, J.; Cui, X.; Zacharek, A.; Cui, Y.; Roberts, C.; Chopp, M. White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke 2011 , 42, 445–452. [Google Scholar] [CrossRef] Jeon, B.T.; Heo, R.W.; Jeong, E.A.; Yi, C.O.; Lee, J.Y.; Kim, K.E.; Kim, H.; Roh, G.S. Effects of caloric restriction on O-GlcNAcylation, Ca 2+ signaling, and learning impairment in the hippocampus of ob/ob mice. Neurobiol. Aging 2016 , 44, 127–137. [Google Scholar] [CrossRef] Jin, Z.; Kim, K.E.; Shin, H.J.; Jeong, E.A.; Park, K.A.; Lee, J.Y.; An, H.S.; Choi, E.B.; Jeong, J.H.; Kwak, W.; et al. Hippocampal Lipocalin 2 Is Associated With Neuroinflammation and Iron-Related Oxidative Stress in ob/ob Mice. J. Neuropathol. Exp. Neurol. 2020 , 79, 530–541. [Google Scholar] [CrossRef] Bhusal, A.; Rahman, M.H.; Lee, I.K.; Suk, K. Role of Hippocampal Lipocalin-2 in Experimental Diabetic Encephalopathy. Front. Endocrinol. 2019 , 10, 25. [Google Scholar] [CrossRef] [PubMed] Bhusal, A.; Rahman, M.H.; Lee, W.H.; Bae, Y.C.; Lee, I.K.; Suk, K. Paradoxical role of lipocalin-2 in metabolic disorders and neurological complications. Biochem. Pharmacol. 2019 , 169, 113626. [Google Scholar] [CrossRef] [PubMed] Mehina, E.M.F.; Taylor, S.; Boghozian, R.; White, E.; Choi, S.E.; Cheema, M.S.; Korbelin, J.; Brown, C.E. Invasion of phagocytic Galectin 3 expressing macrophages in the diabetic brain disrupts vascular repair. Sci. Adv. 2021 , 7, eabg2712. [Google Scholar] [CrossRef] [PubMed] Ge, M.M.; Chen, N.; Zhou, Y.Q.; Yang, H.; Tian, Y.K.; Ye, D.W. Galectin-3 in Microglia-Mediated Neuroinflammation: Implications for Central Nervous System Diseases. Curr. Neuropharmacol. 2022 , 20, 2066–2080. [Google Scholar] [CrossRef] Figure 1. Effects of IF on insulin resistance and adipocyte death in the WAT of HFD mice. ( A ) Body weight (n = 10–12). ( B ) Fat mass (n = 10–12). ( C ) Glucose tolerance test (n = 10–12). ( D ) Insulin tolerance test (n = 10–12). ( E ) Representative images of H&E and TUNEL staining in WAT sections (n = 3–4). Scale bar, 100 μm. ( F ) Quantification of CLSs in H&E-stained sections. ( G ) Quantification of TUNEL-positive cells in TUNEL-stained sections. ( H ) Western blot analysis of Bcl-2 and Bax proteins in WAT lysates (n = 3–4). Quantification of Bax-to-Bcl-2 ratio. ( I ) Representative images of double immunofluorescence staining of F4/80 (green) and perilipin-1 (red) in WAT sections. Nuclei were stained with DAPI. Scale bar, 100 µm. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 2. Effects of IF on serum and WAT LCN2 protein levels in HFD mice. ( A ) Serum LCN2 levels (n = 6) as assessed using ELISA. ( B ) Western blot and quantitative analysis of LCN2 protein in WAT lysates (n = 3–4). Protein levels were normalized to α-tubulin from the same immunoblot. ( C ) Representative images of triple immunofluorescence staining of LCN2 (red), MPO (green), and F4/80 (purple) in WAT sections. Nuclei were stained with DAPI. Scale bar, 50 µm. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 3. Effects of IF on serum and WAT GAL3 protein levels in HFD mice. ( A ) Serum GAL3 levels (n = 6–8) as assessed using ELISA. ( B ) Western blot and quantitative analysis of GAL3 protein in WAT lysates (n = 3–4). Protein levels were normalized to α-tubulin from the same immunoblot. ( C ) Representative images of GAL3 (green) and LCN2 (red) double immunofluorescence staining in WAT sections. Nuclei were stained with DAPI. Scale bar, 50 µm. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 4. Effect of IF on cognitive impairment in HFD mice. ( A ) Latency to reach the target platform over 4 days of MWM training (n = 7). ( B , C ) Swimming speed ( B ) and swimming distance ( C ) on the test day (n = 7). ( D ) Representative images of swimming paths without the platform during testing. Red lines indicate the swimming path. Numbers of target zone quadrant ( E ) and platform ( F ) crossings on the test day (n = 7). Black dashed circles indicate the location of the hidden platform. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 5. Effect of IF on BBB leakage in the hippocampus of HFD mice. ( A ) Western blot and quantitative analysis of claudin-5, ZO-1, ICAM-1, and MMP9 in hippocampal lysates (n = 3–4). Protein levels were normalized to β-actin from the same immunoblot. ( B ) Serum MMP9 level (n = 6). ( C ) Representative images of double immunofluorescence staining of AQP4 (green) and albumin (red) in hippocampal sections. White arrows indicate AQP4-positive astroglial endfeet. Yellow arrow indicates extravascular albumin. Nuclei were stained with DAPI. Scale bar, 50 µm. ( D ) Quantitative analysis of albumin from ( C ). Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 6. Effects of IF on GAL3 and LCN2 protein in the hippocampus of HFD mice. ( A ) Western blot and quantitative analysis of GAL3 and LCN2 in hippocampal lysates (n = 3–4). Protein levels were normalized to β-actin. ( B ) Representative images of double immunofluorescence staining of GAL3 (green) and Iba-1 (red), GAL3 (green) and GFAP (purple), or LCN2 (red) and GFAP (green) in hippocampal sections. Arrows indicate co-localized GAL3 and Iba-1-positive microglia. Nuclei were stained with DAPI. Scale bar, 50 µm. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Figure 7. Effects of IF on neuroinflammation in the hippocampus of HFD mice. ( A , B ) Western blot ( A ) and quantitative analysis ( B ) of TNF-α, TNFR1, IL-6, HMGB1, and RAGE in hippocampal lysates (n = 3–4). Protein levels were normalized to β-actin from the same immunoblot. Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Share and Cite MDPI and ACS Style Lee, J.; An, H.S.; Shin, H.J.; Jang, H.M.; Im, C.O.; Jeong, Y.; Eum, K.; Yoon, S.; Lee, S.J.; Jeong, E.A.; et al. Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3. Nutrients 2024 , 16 , 159. https://doi.org/10.3390/nu16010159 AMA Style Lee J, An HS, Shin HJ, Jang HM, Im CO, Jeong Y, Eum K, Yoon S, Lee SJ, Jeong EA, et al. Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3. Nutrients . 2024; 16(1):159. https://doi.org/10.3390/nu16010159 Chicago/Turabian Style Lee, Jaewoong, Hyeong Seok An, Hyun Joo Shin, Hye Min Jang, Chae Oh Im, Yeonjun Jeong, Kibaek Eum, Sejeong Yoon, So Jeong Lee, Eun Ae Jeong, and et al. 2024. "Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3" Nutrients 16, no. 1: 159. https://doi.org/10.3390/nu16010159

This content was originally published here.

Can't Get enough Freebie, Subscribe

We will send you the latest digital Marketing technology and methods that should help you grow your business.

Subscribe to Our list

Custom Keto Diet

 

Exipure

 

All day slimming tea

&nbsp;

ikaria Juice

&nbsp;

Apple Cider Vinegar Ebook Membership